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Giant dipole effect and second-harmonic generation in quantum wires
biased with a magnetic field
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A. Balandin® and S. Bandyopadhyay®
Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588

(Received 7 November 1996; accepted for publication 17 March)1997

We have theoretically studied giant dipoles associated with transitions between magneto-electric
subbands in a quantum wire subjected to a transverse magnetic field. The strengths of these dipoles
and their resonant frequencies can be varied with the magnetic field which then allows one to tune
the emission wavelength of these transitions. The large magnitude of the dipole moments also leads
to a strong second-harmonic component of the dielectric susceptibility that can be utilized for
nonlinear optical applications such as second-harmonic generation, limiting, mixing, optical
switching, etc. ©1997 American Institute of Physids$S0021-897€07)02612-]

I. INTRODUCTION rier height is relatively small. It has been pointed out that the
. intraband . b h ed electronic states in a quantum confined system biased by a
Direct intraband transitions between the quantized stateg,qyerse electric field are never true bound states since the

(sultIJband)soL ”:je co_r{lduchnonbband 'rr: a qli)an;um well is a b4 icles can always lower their energy by escaping from the
well-researched topitt has been shown both experimen- o) 4 Therefore, these states have a finite lifetime, which
tally and theoretically that such transitions have very Iargeoroadens the transitions

long ago by a ngmber of experimental groﬁp@gcently, escape. A transverse magnetic field applied to a quantum
population inversion between the second and third subbandg; ;

fiit potential barriers to first ordefthe barriers may tilt

?_u%ntur:p ;’lverlll or v;/||re can be Va”?_d by an egternallmagnitlms"ghﬂy because of a second-order effect associated with
ield which then allows one to realize a continuously tuna espace charges and the self-consistgtdll) electric field.

laser or light-emitting-device. Moreover, the field can induceHowever, it effectively breaks inversion symmetry since it

forbiddgn transitions thgt makg additiqnal frequency raNg€Rauses a net charge to accumulate at either edge of the wire
accessible, thus pgrmltt|ng flexible Qev!ce de_s'g_n' (the charges at the two edges have opposite signs as in the
Another pof[enngl use of magnenc_fleld blagmg of quan-c|assical Hall effegt This leads to a nonvanishing even-

tum wells or wires is in nonlinear optics. Nonlinear optical ... susceptibility in a symmetric structure. The skewing
properties stem from higher order dielectric susceptibiltieshas another subtle effect. The degree to which the wave
Sg?CIflcally, :]he hsecond order sqs_cept|b|lét§/2 IS rgsr;])on function is skewed iglifferent in different subbandsnce an
siole for such phenomena as mixing and second-narmonig e iron has different kinetic energies and hence experiences
generation. It is well known that even-order susceptibiliti€Syittarent | orentz forces in different subbands. As a result,
vanish in structures with inversion symmetry. Consequentlytransitions between subbands whose wave functions have the
finite second-order susceptibilities can be obtained in suc ame parity — which are forbidden without a magnetic field
structures only if the inversion symmetry of the conduction-__ 56 oy allowed since the parities are altered by different

band potential is broken either by an external electric field OL mounts in different subbands by the different degrees of
by the intentional growth of an asymmetric well. Obviously, skewing®

the former is the preferred method since an electric field can This article is organized as follows. In Section II, we
Qescribe the theoretical formulation, followed by results. Fi-

of symmetry breaking and the magnitude ef?. This nally, in Section IV, we present the conclusions.
method, however, has a practical shortcoming. An electric

field tilts the potential barriers of the well thereby allowing
carriers to escape by tunneling or thermionic emission. This
is especially serious in GaAs/AlGaAs systems where the bay; tHEORY

40N leave from the University of Notre Dame. We _cor_13ider a quantum wire as shown in Fig_. 1 with a
PElectronic mail: bandy@engrssl.unl.edu magnetic field applied along the direction. The thickness
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B ‘ for initial and final states respectively. The exponential term
of Eq. (2) is not present in Eq(3) since, for photoinduced
transitions k;=k;), the product of the exponential function

o and its complex conjugate are exactly unity. The volume
I—z Ly overlap of the Bloch functions is also unity ferstates with
\1 the same wave vector. Now, if we assume that the incident
N X light is polarized along the direction so thaty=a,, the
7 y above equation simplifies to

wi2

FIG. 1. An electron waveguidguantum wirg subjected to a magnetic field §. (k. B)=e . :ef k.B)v: k.B)d
along thez axis. The width of the wire is much larger than the thickness. f"( B) <Xf|y|X'> —w/2yXf(y’ Bixi(y k.B)dy,
(4)

R whereW is the width of the quantum wire along tlyedirec-
along thez direction is so smalland consequently the sub- tjgn.
band separation in energy is so largeat, for the range of One should note here that if there is no magnétic
photon energies considered, an electron cannot be excitedectrig field applied, the envelope functions are just
(by real transitioh into a subband which has more than two particle-in-box states and the dipole moment in E4). is
nodes along the direction. Such a transition will not be nonzero only for the transitions between subband states of
accessible in energy. This restriction, coupled with the fachpposite parity. For a symmetric square potential well, these
that a magnetic field does not affect lile:omponent of the d|p0|e e|ement$between any two statesand m) are inde-

electron wave function, allows us to drop thecomponent  pendent of the wave vectérand can be found analytically
from further consideration. The width of the wire along the by evaluating the integral in Eq4).

y direction is however large enough that subbands with more

than two nodes along thg direction are accessible in 8 mn
energy. di=e{xilylxi)=eW— =72’

In the framework of the envelope function approxima- ] . )
tion (EFA), an electron wave function can be written as the if n andm have opposite parity

product of a Bloch wave function, periodic with the atomic
lattice spacing, and an envelope wave function, describing
the nonperiodic behavior. Consequently, the wave functiorHowever, when a magnetic field is applied, the skewing of
of an electron for a given wave vectkralong thex direc-  the wave functions changes the integral in &j.and alters
tion, in thenth magnetoelectric subband, at a magnetic fieldhe selection rules. Generally, the skewing causes three ef-
B can be written as fects. First, it makes the dipole moment depend on the wave
_ —iE~(K.B)t/A vectork (since the degree of skewing dependsk)n Sec-
Pn(xy.kB)=Tr(xy.kB)un(x.y.z k)e =B, ond, it reduces the d?pole moment 190r trr;nsitioifﬂ)s between
D : o . .
) ) _ states of opposite paritisince the integral in Eq4) de-
whereW,(x,y.k,B) is an envelope function),(x,y,z,k) is  creasek and third, it allows forbidden transitions between

a Bloch function of a conduction band agg(k,B) is the  gstates of the same parifince the integral in Eqg(4) no
dispersion relation of th@th magnetoelectric subband at a longer vanishes for states of the same parity

flux densityB. The Bloch wave functions are assumed to be '}t 5 clear from Eq.(4) that, to calculate the dipole mo-
s states which is the usual case for semiconductors Whefgents in the presence of a magnetic field, all we need to

J=1/2 for the conduction band. ~ compute are the wave functions i(y,k,B) at a given mag-
The envelope function can be further decomposed into aetic field B, for given magnetoelectric subbanéisand i,
plane wave along the unconfineddirection and a confined and for a given wave vectdt. This is achieved via a nu-
component along thg direction. Thus, merical (finite difference solution of the Schidinger equa-
W, (x,y,K,B) = xn(y,k,B)ei~. ) tion following the prespription of Ref_. 7. Once this is done,
we can calculate the dipole moment in E4).for any chosen

Using the electric dipole approximation, we can write intersubband transition at any chosen magnetic field and for
the matrix element of photoinduced intersubband transitiongny chosen wave vector.

=0, otherwise. (5)

within the conduction band &s In the limit of high magnetic fields, when the magnetic
. _ length (= y&/eB)<<W, one can again obtain an analytical
df,i(k,B)=ef x1(y,k,B)m-r xi(y,k,B)dr expression for the dipole momedy; . In this case, the mag-

netostatic confinement predominates over electrostatic con-

finement and the envelope functiogg(y,k,B) can be ap-
*
Xf ur (x.y,z.k)ui(x.y,z.k)d@, ) proximated by harmonic-oscillator wave functions:
whered() is a volume element;y is the unit vector along the xn(Y,K,B)=x(y—yx.B)
direction of the incident photon polarization=xa,+ya, is 1, ,
the two-dimensional radius vector, and subscripfsstand =NHn(a,y—y e 2¢ " (6)
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where N,=(a/7Y?2?n!)¥? is a normalization constant, 200
H,(a,y) is thenth Hermite polynomialy,=#%k/eB, and

— eB_l 7 1500
NTTT @

In order to evaluate the integral in EQl) analytically,
we extend the limits of integration to infinity assuming that
the wave function tail is negligible at the boundaries of the
wire (i.e. aty=*W/2). This is a very reasonable assump-
tion in a high confining magnetic field. The resulting analyti- 500 |
cal expression for the dipole moment is et-e3

17T, 1000A

1000

dipoles (e-A)

1/2
df,i(B) = e(Xf|y|Xi> = el( T) , if m=n+1 €S)) 93 000 0010 0.020 0030 0040 0.050

k (1/A)

1/2
=el —) , if m=n—-1

2

FIG. 2. Dipole moments for various intersubband transitions as functions of
the propagating wave vectérfor a magnetic flux density of 1 T. At zero
=0, otherwise. translational velocity K=0) the dipole of transitiorel-e3 vanishes. The
GaAs quantum wire is 1000 A wide.
The physical significance of the two analytical limits,

B—0 andB—wx, is obvious. At zero field, the dipole is
determined by the width of the wird; ;~eW, and at the

hlgh field limit it is determined by the magnetic Iength prototype Wire,de1763 reaches a maximum of ZG_A at k
d¢i~el. This is what one would expect intuitively. At zero =0.0051 A and then decreases gradually ultimately reaching
ﬁeld, the deOle is confined eleCtrOStatica”y with the wire Zero. Th|s intriguingnonmonotonicdependence Oh is ex-
width being a measure of this confinement while at highpjained later on. However, at this point, it is interesting to
magnetic field, the dipole is confined magnetostatically anthote that a fairly large forbidden dipole moment of30
the magnetic length is the corresponding measure of thig-A can be achieved in realistic structures at a moderate
confinement. magnetic field of 1 T.
Fig. 3 presents the dipole moments for the same transi-

tions as a function of magnetic flux density. The propagation
Il. RESULTS wave vectok is chosen to be 0.01/A. At zero magnetic field,
a nonvanishing dipole matrix element occurs only for transi-
tions between states of opposite parigl{e2, e2-e3) as

We now present results of our calculations. The physicagxpected from Eq(5). This equation also allows us to esti-
parameters used for the numerical calculations correspond fate the strengths of these zero-field dipoles to beetd0
a GaAs quantum wire with relative dielectric constant for el-e2 and 19%-A for e2-e3 transitions. As we can see
=12.9, and effective mass,=0.067n, wherem, is the  from Fig. 3, these values are in excellent agreement with our
free electron mass.
In Fig. 2, we show the dependence of the dipole moment

d¢ ;(k,B) for three transitions€1-e2, e2-e3, andel-e3) on
the wave vectok when a magnetic fieldfal T is applied 2000
(following usual practice, the transitions are numbered by the wire width
subband indices The dipoles corresponding to transitions 10004
between states of opposite paritgl(e2 ande2-e3) have 1500 |
maxima atkk=0 and then decrease with increasing wave vec-
tor. This can be easily understood as follows. At zero wave
vector (no translational velocitythese states do not experi-
ence any Lorentz force and hence the wave functions are no',
skewed. As the wave vectdr increases, the translational
velocity and the Lorentz force experienced increase. Conse-
quently, the envelope wave functions are skewed more and
more and the dipole moment decreases. Real transitions be ores
tween states of the same parity are forbidden at zero mag- /\
netic field, but at a finite magnetic field, they are forbidden %00 20 40
only atk=0 when there is no translational velocity and no magnetic field (T)
Lorentz force to _Skew the_ wave _functlons. With Increas_mgFlG. 3. The dipoles of three intersubband transitions as functions of the
k, the wave functions are increasingly skewed and the d'pOIQppIied magnetic field. The dipokk,; _.; peaks at a magnetic flux density
moment of forbidden transitions increases. In our chosemf 0.3 T. The wire width is the same as that in Fig. 2.

A. Intraband dipoles

les (e-A)

1000 +

ipo

d
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numerical results. From the analytical expression in ([BYy.
we can estimate the strength of th&-e2 dipole to be 66
e-A at a magnetic flux density of 15 T. This number also 003 |
agrees with our numerical result. Th&-e3 dipole vanishes
at both zero field(because of the spatial symmetry of the
particle-in-a-box stat¢sand at high fields because of the
symmetry of the Landau states or Hermite polynomials. This <
behavior is consistent with Eg&k) and(8). Only at interme-
diate fields, when the wave functions of the subbands are
hybrid between particle-in-a-box states and Hermite polyno- oot 107
mials (and thus “nonsymmetric” in spageis this transition \ /
allowed. This immediately tells us thdt; .; must have a
nonmonotonicdependence on the magnetic flux dendty 000 , , , .
and indeed |t doeS. -0.05 -0.03 -0.01 0.01 0.03 0.05
Let us now examine the nonmonotonic behavior of (a) k (1/A)
des_ 1 More closely. This transition is forbidden at zero field
since the wave functions of the first and third subbands haw
the same parity. At low magnetic fields, the parities are al- 0T 5T
tered by the skewing of the wave functions and consequentl’ A \ / L
dez_e1 iS NO longer zero but increases with the magnetic 1ot
field. It reaches a maximum of about 8A and then de- 004 1 1
creases. This latter decrease is related to the following effec
For a fixed wave vectok, a sufficient increase in the flux
densityB forces the traversing statésskipping orbits” or
“edge states’] to condense into closed cyclotron orbits ooz
(Landau levelsthat are no longer skewed by the magnetic
field to the wire edge since they have no translational veloc:
ity and hence no Lorentz force. While edge states have
skewed wave function that is not symmetric in space, cyclo- 000 L i — o o s
tron orbits have a wave function that is symmetric about the
orbit centery,. Note thaty, depends only ork and B. (b) k (1/A)
Therefore, at a fixed, the wave functions of the first and
third Landau levels are symmetric about@ammoncenter. FIG. 4. _Energy Vs wave vector relation of eI(_ectrons(ahthe fir_st subband
Whenever this kind of symmetry holdgl; ., vanishes. and (b)'ln the third subband of a '1000_)1\ vx_nde quantum wire. The wave
) vector is along the free propagation direction. The results are shown for
Therefore, the dipole moment;_.; decreases gradually to three values of a magnetic field. The energy is calculated from the bulk
zero at high magnetic field with the onset of Landau condeneconduction band edge and the confinement energy forzttgection is
sation. assumed to be zero.

The same physics can be elucidated in a different way by

considering the energy versus wave vector relation in FigSnere are regions of inflexion in the two curyeslowever,
4(a) and 4b) which show the dispersion of the first and third {he point to note is that Landau condensation causes recovery
magneto-electric subbands respectively. of the wave function symmetrgor antisymmetry, but does

At B=0, velocity (slope of the curvgsatk=0.01/A are 1ot restore the original zero-field wave functiorihis is
nonzero for both theel ande3 subbands. However, the ghqwn in Fig. 5 where we show the wave functions in the

Lorentz force is zero becauge=0 and hencele,—e3=0. At o1 syppand at 0 and 10 T. Both wave functions are “sym-
B=5 T, the group velocities for the two subbands are still yatric” in space, but they are otherwise vastly different
nonzero and the Lorentz force is finite resulting in skewindgjce the magnetostatic confinement squeezes the wave func-
of wave functions and a nonvanishing valuedf 3. At tions binding them in cyclotron orbits.

B=10T, the group velocities &= 0.01/A are zero in both The nonmonotonicity in the wave vector dependence of
subbands indicating that the corres_pondmg states have UR-, s in Fig. 2 has a similar origin. Ak is increased, the
dergone Landau condensation. In this case, the Lorentz forgg|ative skewing between the wave functionsé ande3
(for.skewmg is again zero and 'the d!pole momﬂ_l'El—es subbands change nonmonotonically causing the nonmonoto-
vanishes once more. The crucial point to note is that th‘ﬁicity seen.

Lorentz forceev X B can vanish in two different waysi) The process described above is illustrated in Figs)-6
B=0, and(ii) v=0. These two conditions are met at zero 6(c), where we present wave functions of two electronic
and very high magnetic fields. As a result, the dipole mo-states(el ande3) for three values of magnetic flux density.
mentd;_ 3 exhibits a nonmonotonic behavior in magnetic At zero magnetic field the wave functions are symmetric
field. One can ask why the same physics does not causabout the center of the wire and dipole transitiyy_; is
nonmonotonicity in theel-e2 ande2-e3 curves. It is not forbidden[Fig. 6@)]. At low magnetic field the wave func-
clear a priori that nonmonotonicity cannot occuindeed tions are skewed to the edge of the wifedge states” Fig.

0T

5T

E1 (eV

0.06

Es (eV)
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FIG. 5. They component of the electron envelope function for the first
subband at a magnetic flux densities of 0 and 10 T.

6(b)] and the spatial symmetry is broken for both states.
Dipole transitiondgz_¢; is now allowed. It is important to
note here that the symmetry breaking skewing of the wave
functions is caused by the simultaneous presence of a may
netic field and the electrostatic potential barriers at the edge
of the quantum wire. At higher magnetic fields, when the
magnetic length is smaller than the wire width, the electrons
do not “feel” the potential barriers at the edges of the wire
as they undergo complete Landau condensation and execu
cyclotron motion with a radius much smaller than the width
of the wire. In this case, the wave function symmetry is
essentially restoreffFig. 6(c)] although the wave functions
are now symmetric about a point that is not at the center o
the wire. Nonetheless, what is important is that both wave
functions are symmetric about the same point. Consequently
thedgz_¢1 transition vanishes. The simultaneous presence o
both electrostatic confinement and magnetostatic confine
ment is therefore necessary for wave function skewing,
formation of edge states and the observation of forbidder
transitions.

B. Second-harmonic generation

arbitrary units

@

arbitrary units

(b)

arbitrary units

(c)
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It is well known that in systems with inversion symme- FIG. 6. They component of the electron envelope functions for the first and
try there can be no second order non|inea§ityowever, in  third electronic subbands. The results are shown for cases \demo
systems without inversion symmetry, the lowest order optimagnetic field is presentp) when a weak magnetic field is present and,

: N . finally, (c) when a strong magnetic field is present.
cal nonlinearity is of the second order and is expressed by

P (K, 0)=x?(0;01,0,)Ei(ky,01)Ex(kz,w2),  (9)

o L - ﬁw=2 *+ho;,
whereP is the polarization caused by two electric fieHg i (10
and Ez that are associated with the electromagnetic fields of
either two frequency components of the same light beam or hIZ:E tﬁl?i_
i

two different coherent beams with frequencigsand wave

vectorsIZ?. The frequencies and wave vectors obey the en-
ergy and momentum conservation laws

It is obvious that the third-ranked tensg® will vanish
in any structure with inversion symmtery. A quantum con-
J. Appl. Phys., Vol. 81, No. 12, 15 June 1997
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fined structure may lack inversion symmetry for two main 10
reasons.(i) The semiconductor material by its intrinsic
chemical and crystalline structure may lack inversion
symmetry’ and this is the case in most IlI-V, 1I-VI, and
I-VIlI compounds along certain crystallographic directions.
(i) The quantum confining potential well may be asymmet-
ric (e.g. triangular potential well, asymmetric double square _-
well potential, etg. In the first case, the asymmetry is related “=
to the intracell charge asymmetry and is not affected by the — °*
confinement since the latter extends over several unit cells.
In the second case, the asymmetry is artificially imposed and  ,
therefore can be engineered. It clearly depends on the con
fining potential and hence an applied electric field can alter
the potential and change the degree of symmetry breaking. 00,5 20 20 50
In the present work we restrict ourselves to the second magnetic field (T)
case and do not consider intrinsic second-order nonlinearitiel_s

. . . IG. 7. Second-order susceptibility as a function of the biasing magnetic
of GaAs which are actually quite largthe nonlinear suscep- fioiq The peak values of the susceptibility are 817 m/, 1.5

tibility of bulk GaAs is x{%=3.8x1071° m/V19). As men-  x10°7 m/V and 310" m/V for wire widths of 1000 A, 500 A, and 300
tioned before, we avoid an electric field since it promotes&, respectively. The results are shown for the wave vektod.01/A (fixed
carrier escape and we consider a magnetic field instead. Afxcitation frequency

though a magnetic field does not affect the potential to first

order, the simultaneous action ®fmmetricelectrostatic po-

tential and an external magnetic field may lead touheven Eq. (11) is an approximation that applies only under the

charge d|str|_but|onalong the width f{.aXIS) of the wire  -5dition that all of the optical frequencies involvéapera-
c_aused by different _degrees of s_kewmg_ of the wave fun_cfional frequenciess, ,wy, w,) are removed far enough from
tlong. Because of _th|s reason, !t is possible t(l)l breqk the_ r']nthe subband transition frequencies. It means that the medium
version symmetry ina syn_1metnc quan_tum well or wire W't, is assumed to be transparent and loss free at all the relevant
a magnetic field alone. This approach is superior to applylnQ)ptical frequencies. This assumption can be relaxed by the
a transverse electric field since the latter will tilt the confin-introduction of transition damping factors into the expression

ing potential wells thereby promoting carrier escape from the,| Eq. (11). In our study we are mainly interested in the

well by either tunneling or thermionic emission. effects of an applied magnetic field on the second-order sus-

_The large magnitude of the dipole moments associateflyinjjity. Since these effects manifest themselves in Eq.
with otherwise forbidden transitions between subbands of th 1) primarily via the magnetic field dependence of the di-
same parity and their sensitivity to the biasing magnetic ﬁeld;lcﬂe elementsl, =d,. (B), we did not include any damp-

T . . mn— ¥mn 1
opens up the possibility of second-harm.om.c generatio ing constants and associated finite linewidths of the elec-
(SHG) that can be controlled by the magnetic field. In Ordertronic states. One should also note here that @4) is
tq e.Va'“a?‘e the maQ”'t“de and dependences of SHG on ﬂ%"I’rictly correct only for dilute media. In this case, one can
biasing field and wire geometry, we calculate the secondyiq Y@ =Na® with «® being the second-order nonlin-

order susceptibility using the formdfa ear polarization. The above expression is valid only under
moderate excitation.

1-1000 A

g
@®

2-500 A
3-300A

arbitrary units

o
o

L
8.0 10.0

2 o Ned In Fig. 7, we present normalized values gf®) as a
Xinapl = @ @1;,02) = WST;DC po(d) function of magnetic field for three different wire widths and

a fixed value of the wave vectdr (fixed excitation fre-

d# de b quency. The operational frequencies, = w, are chosen for

(1) a CO, laser. For wide ranges of magnetic flux densities

(B<20 T) and wire widths(100 A <W<1000 A), these

. , ) ) frequencies are removed far enough from the subband tran-
whereN is the concentratiotnumber densityof conduction sition frequencie€ ,5(B,W). As long as the latter is true,

electrons, () ,s=%€,5(B,W) is the energy spacing be- ynq,(2) dependence on magnetic field is governed mainly by
tween «, 8 subbands that depends on the applied magnet|8ip0|e elementsd,,,. Consequently, they® curve for

field and wire width,dy,=dy(B,W) is a dipole element \y._ 1000 A peaks at the same value of a magnetic flux den-
calculated using Eq.(4), and o, is defined to be g (B=0.3 T) as theel-e3 dipole curve of Fig. 3. The

X
(Qpa— 01— @2)(Qea— w3)

w,=w1t wp. The total symmetrization operatid®r indi-  magnetic flux density at which® reaches its maximum
cates that the expression that follows it is to be summed ovepcreases with decreasing wire width. This happens because
all six permutations of the pairsu(—w,), (a,01), it takes a higher magnetic field to condense electronic states

(B,wy). Since§T involves a summation over all possible into cyclotron orbits(Landau condensatiprwhen the elec-
permutations, it is clear thaﬁgﬁ(— w,;wq;w>,) IS invariant  trostatic confinement is strongémrarrower wires

under any of them. For simplicity, the Fermi distribution Fig. 8 shows the dependence of the normalized values of
po(a) was assumed to be unity. x? on wire width for three different values of a magnetic

7932 J. Appl. Phys., Vol. 81, No. 12, 15 June 1997 Svizhenko, Balandin, and Bandyopadhyay



x? as rather strong electric fields in quantum wells. Unfor-
tunately, to our knowledge, there is no theoretical or experi-
mental result available for either electric field biased quan-
tum wires or magnetic field biased quantum wells so a direct
comparison is not possible. Nonetheless, it is obvious that
magnetic field biased quantum wires provide a very attrac-
tive alternative to other means of producing lapg@ val-
ues. In fact, the largest value gf?) (obtained at a magnetic
flux density of 2 T in a magnetic-field-biased quantum wire
is found to be three orders of magnitude higher than what
can be achieved in bulk GaAs.

T
1-B=03T
2-B=1T

08  3-B=5T

06

04 +

|%®1, arbitrary units

02

IV. CONCLUSION

We have theoretically studied the giant dipole effect in
magnetic-field-biased semiconductor quantum wires. The di-
poles are associated with transitions between magneto-
electric subbands within the conduction band, some of which
are forbidden in the absence of the magnetic field. The reso-
nant frequencies of these transitions can be tuned by the
magnetic field which allows the realization of externally tun-
able intersubband lasers. We have also studied the possibility

field and a fixed value of the wave vector. For weak magOf second-harmonic generation in a quantum wire biased

netic field of 0.3 T, they® curve increases monotonically With a magnetic field and find a strong second-harmonic

with increasing wire width. This happens becaukg, is ~ component of the susceptibility. This may have important

proportional to the wire widtlW (see Eq(5) which is valid  applications in nonlinear optics.
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