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Giant dipole effect and second-harmonic generation in quantum wires
biased with a magnetic field
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We have theoretically studied giant dipoles associated with transitions between magneto-electric
subbands in a quantum wire subjected to a transverse magnetic field. The strengths of these dipoles
and their resonant frequencies can be varied with the magnetic field which then allows one to tune
the emission wavelength of these transitions. The large magnitude of the dipole moments also leads
to a strong second-harmonic component of the dielectric susceptibility that can be utilized for
nonlinear optical applications such as second-harmonic generation, limiting, mixing, optical
switching, etc. ©1997 American Institute of Physics.@S0021-8979~97!02612-1#

I. INTRODUCTION

Direct intraband transitions between the quantized states
~subbands! of the conduction band in a quantum well is a
well-researched topic.1 It has been shown both experimen-
tally and theoretically that such transitions have very large
dipole moments and narrow bandwidths. Strong infrared ab-
sorption, associated with transitions between the lowest two
electronic subbands in a GaAs quantum well, was observed
long ago by a number of experimental groups.2 Recently,
population inversion between the second and third subbands
of a quantum well has been established unambiguously and
has led to demonstration of the celebrated quantum cascade
laser.3 The energy separation between the subbands in a
quantum well or wire can be varied by an external magnetic
field which then allows one to realize a continuously tunable
laser or light-emitting-device. Moreover, the field can induce
forbidden transitions that make additional frequency ranges
accessible, thus permitting flexible device design.

Another potential use of magnetic field biasing of quan-
tum wells or wires is in nonlinear optics. Nonlinear optical
properties stem from higher order dielectric susceptibilties.
Specifically, the second-order susceptibilityx (2) is respon-
sible for such phenomena as mixing and second-harmonic
generation. It is well known that even-order susceptibilities
vanish in structures with inversion symmetry. Consequently,
finite second-order susceptibilities can be obtained in such
structures only if the inversion symmetry of the conduction-
band potential is broken either by an external electric field or
by the intentional growth of an asymmetric well. Obviously,
the former is the preferred method since an electric field can
be continuously varied which allows one to tune the degree
of symmetry breaking and the magnitude ofx (2). This
method, however, has a practical shortcoming. An electric
field tilts the potential barriers of the well thereby allowing
carriers to escape by tunneling or thermionic emission. This
is especially serious in GaAs/AlGaAs systems where the bar-

rier height is relatively small. It has been pointed out that the
electronic states in a quantum confined system biased by a
transverse electric field are never true bound states since the
particles can always lower their energy by escaping from the
well.4 Therefore, these states have a finite lifetime, which
broadens the transitions.

To overcome this shortcoming, one can adopt magneto-
static biasing. A magnetic field can break inversion symme-
try without tilting potential barriers and promoting carrier
escape. A transverse magnetic field applied to a quantum
wire exerts a Lorentz force on an electron moving along the
wire. As a result, its wave function~in any subband! will be
skewed towards one edge of the wire. This skewing does not
tilt potential barriers to first order~the barriers may tilt
slightly because of a second-order effect associated with
space charges and the self-consistent~Hall! electric field!.
However, it effectively breaks inversion symmetry since it
causes a net charge to accumulate at either edge of the wire
~the charges at the two edges have opposite signs as in the
classical Hall effect!. This leads to a nonvanishing even-
order susceptibility in a symmetric structure. The skewing
has another subtle effect. The degree to which the wave
function is skewed isdifferent in different subbandssince an
electron has different kinetic energies and hence experiences
different Lorentz forces in different subbands. As a result,
transitions between subbands whose wave functions have the
same parity — which are forbidden without a magnetic field
— are now allowed since the parities are altered by different
amounts in different subbands by the different degrees of
skewing.5

This article is organized as follows. In Section II, we
describe the theoretical formulation, followed by results. Fi-
nally, in Section IV, we present the conclusions.

II. THEORY

We consider a quantum wire as shown in Fig. 1 with a
magnetic field applied along thez direction. The thickness
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along thez direction is so small~and consequently the sub-
band separation in energy is so large! that, for the range of
photon energies considered, an electron cannot be excited
~by real transition! into a subband which has more than two
nodes along thez direction. Such a transition will not be
accessible in energy. This restriction, coupled with the fact
that a magnetic field does not affect thez component of the
electron wave function, allows us to drop thez component
from further consideration. The width of the wire along the
y direction is however large enough that subbands with more
than two nodes along they direction are accessible in
energy.

In the framework of the envelope function approxima-
tion ~EFA!, an electron wave function can be written as the
product of a Bloch wave function, periodic with the atomic
lattice spacing, and an envelope wave function, describing
the nonperiodic behavior. Consequently, the wave function
of an electron for a given wave vectork along thex direc-
tion, in thenth magnetoelectric subband, at a magnetic field
B can be written as

Fn~x,y,k,B,t !5Cn~x,y,k,B!un~x,y,z,k!e2 jEn~k,B!t/\,
~1!

whereCn(x,y,k,B) is an envelope function,un(x,y,z,k) is
a Bloch function of a conduction band andEn(k,B) is the
dispersion relation of thenth magnetoelectric subband at a
flux densityB. The Bloch wave functions are assumed to be
s states which is the usual case for semiconductors where
Ĵ51/2 for the conduction band.

The envelope function can be further decomposed into a
plane wave along the unconfinedx direction and a confined
component along they direction. Thus,

Cn~x,y,k,B!5xn~y,k,B!ejkx. ~2!

Using the electric dipole approximation, we can write
the matrix element of photoinduced intersubband transitions
within the conduction band as6

df ,i~k,B!5eE x f~y,k,B!ĥ•rWx i~y,k,B!drW

3E uf* ~x,y,z,k!ui~x,y,z,k!dV, ~3!

wheredV is a volume element,ĥ is the unit vector along the
direction of the incident photon polarization,rW5xaW x1yaW y is
the two-dimensional radius vector, and subscriptsi , f stand

for initial and final states respectively. The exponential term
of Eq. ~2! is not present in Eq.~3! since, for photoinduced
transitions (kf5ki), the product of the exponential function
and its complex conjugate are exactly unity. The volume
overlap of the Bloch functions is also unity fors states with
the same wave vector. Now, if we assume that the incident
light is polarized along they direction so thatĥ5ây , the
above equation simplifies to

df ,i~k,B!5e^x f uyux i&5eE
2W/2

W/2

yx f~y,k,B!x i~y,k,B!dy,

~4!

whereW is the width of the quantum wire along they direc-
tion.

One should note here that if there is no magnetic~or
electric! field applied, the envelope functionsx i are just
particle-in-box states and the dipole moment in Eq.~4! is
nonzero only for the transitions between subband states of
opposite parity. For a symmetric square potential well, these
dipole elements~between any two statesn andm) are inde-
pendent of the wave vectork and can be found analytically1

by evaluating the integral in Eq.~4!.

df ,i5e^x f uyux i&5eW
8

p2

mn

~m22n2!2
,

if n andm have opposite parity

50, otherwise. ~5!

However, when a magnetic field is applied, the skewing of
the wave functions changes the integral in Eq.~4! and alters
the selection rules. Generally, the skewing causes three ef-
fects. First, it makes the dipole moment depend on the wave
vector k ~since the degree of skewing depends onk). Sec-
ond, it reduces the dipole moment for transitions between
states of opposite parity@since the integral in Eq.~4! de-
creases#, and third, it allows forbidden transitions between
states of the same parity@since the integral in Eq.~4! no
longer vanishes for states of the same parity#.

It is clear from Eq.~4! that, to calculate the dipole mo-
ments in the presence of a magnetic field, all we need to
compute are the wave functionsx f ,i(y,k,B) at a given mag-
netic fieldB, for given magnetoelectric subbandsf and i ,
and for a given wave vectork. This is achieved via a nu-
merical ~finite difference! solution of the Schro¨dinger equa-
tion following the prescription of Ref. 7. Once this is done,
we can calculate the dipole moment in Eq.~4! for any chosen
intersubband transition at any chosen magnetic field and for
any chosen wave vector.

In the limit of high magnetic fields, when the magnetic
length l (5A\/eB)!W, one can again obtain an analytical
expression for the dipole momentdf ,i . In this case, the mag-
netostatic confinement predominates over electrostatic con-
finement and the envelope functionsxn(y,k,B) can be ap-
proximated by harmonic-oscillator wave functions:

xn~y,k,B![x~y2yk ,B!

5NnHn~a,y2yk!e
2
1
2 a2~y2yk!2, ~6!

FIG. 1. An electron waveguide~quantum wire! subjected to a magnetic field
along thez axis. The width of the wire is much larger than the thickness.
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where Nn5(a/p1/222n!) 1/2 is a normalization constant,
Hn(a,y) is thenth Hermite polynomial,yk5\k/eB, and

a5AeB

\
5
1

l
. ~7!

In order to evaluate the integral in Eq.~4! analytically,
we extend the limits of integration to infinity assuming that
the wave function tail is negligible at the boundaries of the
wire ~i.e. at y56W/2). This is a very reasonable assump-
tion in a high confining magnetic field. The resulting analyti-
cal expression for the dipole moment is

df ,i~B!5e^x f uyux i&5elS n11

2 D 1/2, if m5n11 ~8!

5elS n2D
1/2

, if m5n21

50, otherwise.

The physical significance of the two analytical limits,
B→0 andB→`, is obvious. At zero field, the dipole is
determined by the width of the wiredf ,i;eW, and at the
high field limit it is determined by the magnetic length
df ,i;el. This is what one would expect intuitively. At zero
field, the dipole is confined electrostatically with the wire
width being a measure of this confinement while at high
magnetic field, the dipole is confined magnetostatically and
the magnetic length is the corresponding measure of this
confinement.

III. RESULTS

A. Intraband dipoles

We now present results of our calculations. The physical
parameters used for the numerical calculations correspond to
a GaAs quantum wire with relative dielectric constante r
512.9, and effective massme50.067m0 wherem0 is the
free electron mass.

In Fig. 2, we show the dependence of the dipole moment
df ,i(k,B) for three transitions (e1-e2, e2-e3, ande1-e3) on
the wave vectork when a magnetic field of 1 T is applied
~following usual practice, the transitions are numbered by the
subband indices!. The dipoles corresponding to transitions
between states of opposite parity (e1-e2 ande2-e3) have
maxima atk50 and then decrease with increasing wave vec-
tor. This can be easily understood as follows. At zero wave
vector ~no translational velocity! these states do not experi-
ence any Lorentz force and hence the wave functions are not
skewed. As the wave vectork increases, the translational
velocity and the Lorentz force experienced increase. Conse-
quently, the envelope wave functions are skewed more and
more and the dipole moment decreases. Real transitions be-
tween states of the same parity are forbidden at zero mag-
netic field, but at a finite magnetic field, they are forbidden
only at k50 when there is no translational velocity and no
Lorentz force to skew the wave functions. With increasing
k, the wave functions are increasingly skewed and the dipole
moment of forbidden transitions increases. In our chosen

prototype wire,de12e3 reaches a maximum of 28e-Å at k
50.0051 Å and then decreases gradually ultimately reaching
zero. This intriguingnonmonotonicdependence onk is ex-
plained later on. However, at this point, it is interesting to
note that a fairly large forbidden dipole moment of;30
e-Å can be achieved in realistic structures at a moderate
magnetic field of 1 T.

Fig. 3 presents the dipole moments for the same transi-
tions as a function of magnetic flux density. The propagation
wave vectork is chosen to be 0.01/Å. At zero magnetic field,
a nonvanishing dipole matrix element occurs only for transi-
tions between states of opposite parity (e1-e2, e2-e3) as
expected from Eq.~5!. This equation also allows us to esti-
mate the strengths of these zero-field dipoles to be 180e-Å
for e1-e2 and 195e-Å for e2-e3 transitions. As we can see
from Fig. 3, these values are in excellent agreement with our

FIG. 2. Dipole moments for various intersubband transitions as functions of
the propagating wave vectork for a magnetic flux density of 1 T. At zero
translational velocity (k50) the dipole of transitione1-e3 vanishes. The
GaAs quantum wire is 1000 Å wide.

FIG. 3. The dipoles of three intersubband transitions as functions of the
applied magnetic field. The dipolede12e3 peaks at a magnetic flux density
of 0.3 T. The wire width is the same as that in Fig. 2.
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numerical results. From the analytical expression in Eq.~8!,
we can estimate the strength of thee1-e2 dipole to be 66
e-Å at a magnetic flux density of 15 T. This number also
agrees with our numerical result. Thee1-e3 dipole vanishes
at both zero field~because of the spatial symmetry of the
particle-in-a-box states! and at high fields because of the
symmetry of the Landau states or Hermite polynomials. This
behavior is consistent with Eqs.~5! and~8!. Only at interme-
diate fields, when the wave functions of the subbands are a
hybrid between particle-in-a-box states and Hermite polyno-
mials ~and thus ‘‘nonsymmetric’’ in space!, is this transition
allowed. This immediately tells us thatde32e1 must have a
nonmonotonicdependence on the magnetic flux densityB
and indeed it does.

Let us now examine the nonmonotonic behavior of
de32e1 more closely. This transition is forbidden at zero field
since the wave functions of the first and third subbands have
the same parity. At low magnetic fields, the parities are al-
tered by the skewing of the wave functions and consequently
de32e1 is no longer zero but increases with the magnetic
field. It reaches a maximum of about 30e-Å and then de-
creases. This latter decrease is related to the following effect.
For a fixed wave vectork, a sufficient increase in the flux
densityB forces the traversing states~‘‘skipping orbits’’ or
‘‘edge states’’! to condense into closed cyclotron orbits
~Landau levels! that are no longer skewed by the magnetic
field to the wire edge since they have no translational veloc-
ity and hence no Lorentz force. While edge states have a
skewed wave function that is not symmetric in space, cyclo-
tron orbits have a wave function that is symmetric about the
orbit centeryk . Note thatyk depends only onk and B.
Therefore, at a fixedk, the wave functions of the first and
third Landau levels are symmetric about acommoncenter.
Whenever this kind of symmetry holds,de32e1 vanishes.
Therefore, the dipole momentde32e1 decreases gradually to
zero at high magnetic field with the onset of Landau conden-
sation.

The same physics can be elucidated in a different way by
considering the energy versus wave vector relation in Figs.
4~a! and 4~b! which show the dispersion of the first and third
magneto-electric subbands respectively.

At B50, velocity ~slope of the curves! at k50.01/Å are
nonzero for both thee1 and e3 subbands. However, the
Lorentz force is zero becauseB50 and hencede12e350. At
B55 T, the group velocities for the two subbands are still
nonzero and the Lorentz force is finite resulting in skewing
of wave functions and a nonvanishing value ofde12e3 . At
B510 T, the group velocities atk50.01/Å are zero in both
subbands indicating that the corresponding states have un-
dergone Landau condensation. In this case, the Lorentz force
~for skewing! is again zero and the dipole momentde12e3

vanishes once more. The crucial point to note is that the
Lorentz forceevW 3B can vanish in two different ways:~i!
B50, and ~ii ! vW 50. These two conditions are met at zero
and very high magnetic fields. As a result, the dipole mo-
mentde12e3 exhibits a nonmonotonic behavior in magnetic
field. One can ask why the same physics does not cause
nonmonotonicity in thee1-e2 ande2-e3 curves. It is not
clear a priori that nonmonotonicity cannot occur~indeed

there are regions of inflexion in the two curves!. However,
the point to note is that Landau condensation causes recovery
of the wave function symmetry~or antisymmetry!, but does
not restore the original zero-field wave functions. This is
shown in Fig. 5 where we show the wave functions in the
e1 subband at 0 and 10 T. Both wave functions are ‘‘sym-
metric’’ in space, but they are otherwise vastly different
since the magnetostatic confinement squeezes the wave func-
tions binding them in cyclotron orbits.

The nonmonotonicity in the wave vector dependence of
de12e3 in Fig. 2 has a similar origin. Ask is increased, the
relative skewing between the wave functions ine1 ande3
subbands change nonmonotonically causing the nonmonoto-
nicity seen.

The process described above is illustrated in Figs. 6~a!–
6~c!, where we present wave functions of two electronic
states~e1 ande3! for three values of magnetic flux density.
At zero magnetic field the wave functions are symmetric
about the center of the wire and dipole transitionde32e1 is
forbidden@Fig. 6~a!#. At low magnetic field the wave func-
tions are skewed to the edge of the wire@‘‘edge states’’ Fig.

FIG. 4. Energy vs wave vector relation of electrons in~a! the first subband
and ~b! in the third subband of a 1000 Å wide quantum wire. The wave
vector is along the free propagation direction. The results are shown for
three values of a magnetic field. The energy is calculated from the bulk
conduction band edge and the confinement energy for thez-direction is
assumed to be zero.
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6~b!# and the spatial symmetry is broken for both states.
Dipole transitionde32e1 is now allowed. It is important to
note here that the symmetry breaking skewing of the wave
functions is caused by the simultaneous presence of a mag-
netic field and the electrostatic potential barriers at the edges
of the quantum wire. At higher magnetic fields, when the
magnetic length is smaller than the wire width, the electrons
do not ‘‘feel’’ the potential barriers at the edges of the wire
as they undergo complete Landau condensation and execute
cyclotron motion with a radius much smaller than the width
of the wire. In this case, the wave function symmetry is
essentially restored@Fig. 6~c!# although the wave functions
are now symmetric about a point that is not at the center of
the wire. Nonetheless, what is important is that both wave
functions are symmetric about the same point. Consequently,
thede32e1 transition vanishes. The simultaneous presence of
both electrostatic confinement and magnetostatic confine-
ment is therefore necessary for wave function skewing,
formation of edge states and the observation of forbidden
transitions.

B. Second-harmonic generation

It is well known that in systems with inversion symme-
try there can be no second order nonlinearity.8 However, in
systems without inversion symmetry, the lowest order opti-
cal nonlinearity is of the second order and is expressed by

PW ~2!~kW ,v!5x~2!~v;v1 ,v2!E1
W ~k1W ,v1!E2

W ~k2W ,v2!, ~9!

wherePW is the polarization caused by two electric fieldsEW 1

andEW 2 that are associated with the electromagnetic fields of
either two frequency components of the same light beam or
two different coherent beams with frequenciesv i and wave
vectorskiW . The frequencies and wave vectors obey the en-
ergy and momentum conservation laws

\v5(
i

6\v i ,

~10!

\kW5(
i

6\kiW .

It is obvious that the third-ranked tensorx (2) will vanish
in any structure with inversion symmtery. A quantum con-

FIG. 5. They component of the electron envelope function for the first
subband at a magnetic flux densities of 0 and 10 T.

FIG. 6. They component of the electron envelope functions for the first and
third electronic subbands. The results are shown for cases when~a! no
magnetic field is present,~b! when a weak magnetic field is present and,
finally, ~c! when a strong magnetic field is present.
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fined structure may lack inversion symmetry for two main
reasons.~i! The semiconductor material by its intrinsic
chemical and crystalline structure may lack inversion
symmetry,9 and this is the case in most III–V, II–VI, and
I–VII compounds along certain crystallographic directions.
~ii ! The quantum confining potential well may be asymmet-
ric ~e.g. triangular potential well, asymmetric double square
well potential, etc.!. In the first case, the asymmetry is related
to the intracell charge asymmetry and is not affected by the
confinement since the latter extends over several unit cells.
In the second case, the asymmetry is artificially imposed and
therefore can be engineered. It clearly depends on the con-
fining potential and hence an applied electric field can alter
the potential and change the degree of symmetry breaking.

In the present work we restrict ourselves to the second
case and do not consider intrinsic second-order nonlinearities
of GaAs which are actually quite large~the nonlinear suscep-
tibility of bulk GaAs is x14

(2)53.8310210 m/V10!. As men-
tioned before, we avoid an electric field since it promotes
carrier escape and we consider a magnetic field instead. Al-
though a magnetic field does not affect the potential to first
order, the simultaneous action ofsymmetricelectrostatic po-
tential and an external magnetic field may lead to theuneven
charge distributionalong the width (y axis! of the wire
caused by different degrees of skewing of the wave func-
tions. Because of this reason, it is possible to break the in-
version symmetry in a symmetric quantum well or wire with
a magnetic field alone. This approach is superior to applying
a transverse electric field since the latter will tilt the confin-
ing potential wells thereby promoting carrier escape from the
well by either tunneling or thermionic emission.

The large magnitude of the dipole moments associated
with otherwise forbidden transitions between subbands of the
same parity and their sensitivity to the biasing magnetic field
opens up the possibility of second-harmonic generation
~SHG! that can be controlled by the magnetic field. In order
to evaluate the magnitude and dependences of SHG on the
biasing field and wire geometry, we calculate the second-
order susceptibility using the formula11

xmab
~2! ~2vs ;v1 ;v2!5

Ne3

e02\2ST̂(
abc

ro~a!

3F dab
m dbc

a dca
b

~Vba2v12v2!~Vca2v2!
G , ~11!

whereN is the concentration~number density! of conduction
electrons,\Vab[\Vab(B,W) is the energy spacing be-
tweena,b subbands that depends on the applied magnetic
field and wire width,dmn[dmn(B,W) is a dipole element
calculated using Eq.~4!, and vs is defined to be
vs5v11v2 . The total symmetrization operationST̂ indi-
cates that the expression that follows it is to be summed over
all six permutations of the pairs (m,2vs), (a,v1),
(b,v2). SinceST̂ involves a summation over all possible
permutations, it is clear thatxmab

(2) (2vs ;v1 ;v2) is invariant
under any of them. For simplicity, the Fermi distribution
ro(a) was assumed to be unity.

Eq. ~11! is an approximation that applies only under the
condition that all of the optical frequencies involved~opera-
tional frequenciesvs ,v1 ,v2) are removed far enough from
the subband transition frequencies. It means that the medium
is assumed to be transparent and loss free at all the relevant
optical frequencies. This assumption can be relaxed by the
introduction of transition damping factors into the expression
in Eq. ~11!. In our study we are mainly interested in the
effects of an applied magnetic field on the second-order sus-
ceptibility. Since these effects manifest themselves in Eq.
~11! primarily via the magnetic field dependence of the di-
pole elementsdmn[dmn(B), we did not include any damp-
ing constants and associated finite linewidths of the elec-
tronic states. One should also note here that Eq.~11! is
strictly correct only for dilute media. In this case, one can
write x (2)5Na (2) with a (2) being the second-order nonlin-
ear polarization. The above expression is valid only under
moderate excitation.

In Fig. 7, we present normalized values ofx (2) as a
function of magnetic field for three different wire widths and
a fixed value of the wave vectork ~fixed excitation fre-
quency!. The operational frequenciesv15v2 are chosen for
a CO2 laser. For wide ranges of magnetic flux densities
(B,20 T! and wire widths~100 Å ,W,1000 Å!, these
frequencies are removed far enough from the subband tran-
sition frequenciesVab(B,W). As long as the latter is true,
thex (2) dependence on magnetic field is governed mainly by
dipole elementsdmn . Consequently, thex (2) curve for
W51000 Å peaks at the same value of a magnetic flux den-
sity (B50.3 T! as thee1-e3 dipole curve of Fig. 3. The
magnetic flux density at whichx (2) reaches its maximum
increases with decreasing wire width. This happens because
it takes a higher magnetic field to condense electronic states
into cyclotron orbits~Landau condensation! when the elec-
trostatic confinement is stronger~narrower wires!.

Fig. 8 shows the dependence of the normalized values of
x (2) on wire width for three different values of a magnetic

FIG. 7. Second-order susceptibility as a function of the biasing magnetic
field. The peak values of the susceptibility are 13.231027 m/V, 1.5
31027 m/V and 331028 m/V for wire widths of 1000 Å, 500 Å, and 300
Å, respectively. The results are shown for the wave vectork50.01/Å ~fixed
excitation frequency!.
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field and a fixed value of the wave vector. For weak mag-
netic field of 0.3 T, thex (2) curve increases monotonically
with increasing wire width. This happens becausedm,n is
proportional to the wire widthW ~see Eq.~5! which is valid
at zero field!. The magnetic field is obviously not strong
enough for the onset of Landau condensation. At a moderate
magnetic flux density of 1 T, we can observe some saturation
features, and for a strong magnetic field of 5 T, the curve is
nonmonotonic, rolling down to almost zero for the wire
width of 1000 Å. The physics underlying the difference in
the behaviors of the three curves is essentially the same as
that responsible for the features in Fig. 7. At small values of
wire width (W'170 Å!, there is an additional peak in the
x (2) curve. This peak is a manifestation of the fact that
Vba has become comparable to the operational frequencies,
i.e. Vba'v11v2 .

In our numerical calculations we have usedN51017

cm23. For this dilute concentration, high density effects such
as screening and bandgap renormalization are not important
and Eq.~11! is strictly valid. In fact, Ref. 1 demonstrated
excellent agreement between theory and experiment without
accounting for any high density effect even though the car-
rier concentration in that study wasN5531017/cm3. There-
fore, we believe that high density effects are not significant
in this regime.

The peak value of the second-order susceptibility for a
wire width of 500 Å isx (2)51.531027 m/V ~the absolute
magnitudes of the peak values for various wire widths are
given in the caption of Fig. 7!. For comparison, the nonlinear
susceptibility of electric field biased GaAs quantum wells
(W592 Å!, calculated theoretically and measured experi-
mentally in Ref. 1, wasx (2)52.431028 m/V for an electric
field of 36 kV/cm. This shows that relatively weak magnetic
fields in quantum wires can produce similar magnitudes of

x (2) as rather strong electric fields in quantum wells. Unfor-
tunately, to our knowledge, there is no theoretical or experi-
mental result available for either electric field biased quan-
tum wires or magnetic field biased quantum wells so a direct
comparison is not possible. Nonetheless, it is obvious that
magnetic field biased quantum wires provide a very attrac-
tive alternative to other means of producing largex (2) val-
ues. In fact, the largest value ofx (2) ~obtained at a magnetic
flux density of 2 T! in a magnetic-field-biased quantum wire
is found to be three orders of magnitude higher than what
can be achieved in bulk GaAs.

IV. CONCLUSION

We have theoretically studied the giant dipole effect in
magnetic-field-biased semiconductor quantum wires. The di-
poles are associated with transitions between magneto-
electric subbands within the conduction band, some of which
are forbidden in the absence of the magnetic field. The reso-
nant frequencies of these transitions can be tuned by the
magnetic field which allows the realization of externally tun-
able intersubband lasers. We have also studied the possibility
of second-harmonic generation in a quantum wire biased
with a magnetic field and find a strong second-harmonic
component of the susceptibility. This may have important
applications in nonlinear optics.
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FIG. 8. Second-order susceptibility as a function of the wire width for three
values of the biasing magnetic field. The maximum values of thex (2) curves
are the same as in Fig. 7. The narrow peaks at a wire width of;200 Å are
due to resonances occurring when eitherVba5v11v2 or Vca5v2 .
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